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The problem is considered of the injection of an electrically-conducting 
fluid into the boundary layer formed on the surface of a flat plate. in 
the presence of a magnetic field perpendicular to the surface of the 
plate. 

1. Suppose a plane semi-infinite plate immersed in a gas flow with 

constant temperature T,, density p, and velocity u_. Through the surface 
of the plate an electrically-conducting liquid (gas) is introduced, form- 
ing a thin layer on the plate as it is entrained by the external flow. 
The flow proceeds in a magnetic field H, perpendicular to the plane of 
the plate (Fig. 1). We choose a system of coordinates oriented with axis 
#’ along, and axis 9 perpen’dicular to, the surface of the plate. The 

layer on the wall and the exterior flow are separated by a surface of 
discontinuity, on which the physical-chemical properties of the material 
change. The layer on the surface and all the quantities in it we shall 
designate by the index 2, and the part of the boundary layer relating to 
the exterior flow we shall designate by the index 1. 

We go over to dimensionless variables according to the formulas 

x0 = lx, u” = uoou, P” = POOP9 T” = T,T, H” = H,H (5) 

y” = .& y, v” = s v, q” = q,,q, 6’ = 6.6, k” = k&c (l-1) 

Here II and v are the velocities in the x- and y-directions respective- 

ly, v is the coefficient of dynamic viscosity, k is the coefficient of 
thermal conductivity, u is the electrical conductivity of the medium, 1 
is the characteristic dimension along the plate, H, is the characteristic 
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intensity of the magnetic field, p is the normal component of the mag- 

netic field on the wall, R = p,u,Z/q, is the Reynolds number. The 
dimensional quantities q_, k, refer to the inflowing stream, u is the 
characteristic conductivity of the injected fluid and quantitizs with 

the superscript ’ have dimensions. 

We assume that the conductivity of 

the medium in region 1 may be Y”h 

neglected in comparison with the con- 

ductivity of the injected fluid, and 

the magnetic Reynolds number, based 

on the length of the boundary layer, 

is of 6rder unity, whereas the quan- 

tity l/dR is small: 

Rm = 
u,l5 
c” 47c = 0 (I), +$= 0 (1) 

Fig. 1. 

In dimensionless variables, the equations of motion in region 1 may 

be written 

In region 2 the motion is described by the system 

In the systems (1.2) and (1.3) the following constant Parameters are 

introduced: 

2 

1 6,Hw2 ‘pjqi’ % 
r= c~pcoua, ’ pi= 7, mi2=c T 

Pi 02 
(i = 1, 2) 

z 

The equations of motion are supplemented by conditions on the surface 

of the plate, the line of discontinuity Q(x) and the surface of the 

boundary layer. On the outer surface, we have u1 = 1, T, = 1. On the sur- 

face of the plate we assume that a2 = 0 and that the temperature condi- 

tions and the time rate of introduction of the fluid are known. Finally, 

it is possible to show that when the magnetic permeabilities of the two 

media are the same (~1 = pz = 1) th e relations on the surface of discon- 

tinuity can be reduced to the form used in [ 1 I, in which the solution 

of the problem of fluid introduction without the magnetic field is found: 
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The problem posed is self-similar if the magnetic field and the time 
rate of introduction of the fluid are proportional to I/\/x 

H” = Ii, + , 
2 

P (xs 0) v (x, 0) = pcchJ c , _ PooU~XO _ f$ 

l/E,, 2 
x 

Qx 

(~~)~=~~)2, Ul'U2, T1=T2, t,c+g (1.4) 

me introduce the Blasius variable 4 = l/d% and the function o(u) = 
vdu/dc; Equations (1.2) and (1.3) can be reduced to the system of ordi- 
nary differential equationa 

w” + x,2 ._E. = 0, 
20 

T’+T’-$-((1-P,J+(Pw”),=O for u*,<rt,<i 
(1.5) 

w” + lQ2+ -&_~UU=O 
du o 

~(l-P,)+~]+(Pm.)2jf+~~=0 
for O<u<u* 

Here u* is the velocity along the line of discontinuity 

The functions K12, K2’ and $ depend only on the temperature because 
the pressure is constant in the entire boundary layer. The system (1.5) 
is supplemented by the relations 

T1= 1, ox= 0 for u=l 

01’ = 0, m2f - r$u 01= 02 
0% 

NTI’ = Tz’, T1= T.2 N= klOllZO 

%‘=kz” > 

for 2~ = EC* 

CO%’ = 11% c, T = T, for u=O 

The nine conditions (1.6) are sufficient for the solution of the two 
systems (1.5), each of which is of the foucth order, 8nd for the deter- 
mination of the velocity on the surface of discontinuity. 

2. The solution of the system (1.5) with boundary conditions (1.6) 
was obtained in the case of constant values of K12, 1122 and $ where the 
parameter Kz2 has a large magnitude. For this the coefficient of dynamic 
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viscosity in region 1 should be proportional to the temperature (K,* = l), 

and the motion in region 2 should take place with negligible discon- 

tinuity in temperature (then the density, conductivity and coefficient 

of dynamic viscosity may be considered constant). The condition K2* = 

K* >> 1 is satisfied if one require that the density and coefficient of 

dynamic viscosity in region 2 are larger than in region 1. Then 

For these assumed conditions, it is possible to solve the dynamic 

problem (determination of the velocity field) separately from the thermal 

problem (determination of the temperature field). From the system (1.5) 

we obtain the following closed system of equations: 
(2.1) 

n,“+2+ =o for u* f u < 1; dfK$-~*Ke?&=D for 0 < u <.u* 

co1 (1) = 0, 02’ (0) = + c; 01’ = 0, 02’ = r*K s 1 01= co2 for u=u* 

We introduce expressions for the coeffici 

all drag of the plate. For the force acting 

have the expression 

Introducing the friction coefficient and 

the total drag by the formulas 

F 
'd = 1’2 

17. P&, 

we obtain 

Cf v/R, - = 02(O), 
2 

'd 1/R, 
~ 2 

= 02 (0) + c* 

ent of friction and the over- 

on unit area of the plate we 

Fig. 2. 

We make use of the fact that the parameter K is large. The solution 

of the system (2.1) can be obtained by expansion in a power series in 

K-l as described in [ 2 ] 6 Omitting the unwieldy details, we present the 

final results. For the friction coefficient and the total drag we obtain 

(2.2) 

cf v/R, = 0.664-0.5431 $! - 2y*c 7+ 
0.0526 cs; 0.1974 c + 0.2363 r* $ + 0 (K-S) 

sd 1/R, = 0.664-0.5431 $ + 0.0526 cs;20.1g74 ’ + 0.2863 r* $ + 0 (K-3) (2.3) 
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For the parameter of magneto-gasdynamical interaction y* equal to 
zero, we obtain the solution of the problem of injection of fluid with- 
out the magnetic field. This problem was solved in [ 1 1 by use of a 
numerical integration of the equations. In the absence of a magnetic 
field and fluid injection Formula (2.2) gives the classical solution of 
the boundary-layer equation. In Fig. 2 is shown the dependence of crfiZ 
on the injection constant C for K = 5 and different values of y = ‘i;, 
computed by taking account of first-order terms in K- ‘. The c&e U a” 

is also presented, as computed for 7 = 0, taking account of second-order 
terms in K- ‘. The dotted curve is the curve obtained in [l I. In spite 
of the relatively small size of K. for values of the constant C in the 
range from 0 to 2, excellent agreement with the exact solution is ob- 
tained when only the first approximation is used. This is evidence of the 
effectiveness of the proposed method of expansion in terms of the small 
parameter l/K. As is evident from Fig. 2. the presence of the magnetic 
field leads to a decrease in surface friction. The first-order total 

drag. as follows from Formula (2.3), coincides with the friction drag in 

the absence of the magnetic field. The increase in drag by reason of the 
cutting of magnetic force lines by the stream is compensated by the de- 
crease in the surface friction. Further, calculation of the terms of 

order K- 2 indicates that the overall drag of the plate with fluid in- 
jection in the presence of a magnetic field increases. However, it does 
not exceed the drag of the plate in question without injection and with- 
out taking account of the magnetic field. 
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